Protein Crystallization

Protein crystallization is a key assay for structural studies of proteins. The protocols for crystallization of protein are challenging due to the stringent requirement for pure samples and control of environmental conditions during the crystallization process. Vapor diffusion using hanging drop is a preferred method for obtaining quality crystals with…

more

Buffers and Reagents

High-quality, ready-to-use buffers and reagents manufactured in ISO- certified facilities.

more
Grace Bio-Labs nitrocellulose microarray substrates
forward phase protein microarray
Reverse phase protein array

Protein Microarray Substrates

more

Grace Bio-Labs microarray surface chemistry is based on the well-known protein-binding properties of nitrocellulose. A range of different formulations have…

APPLICATIONS:

Antigen-Capture AssayAntibody Capture AssayCoronavirus Antigen ArrayEpitope-mappingBiomarker Discovery and ValidationImmunogen Discovery

DNA Microarray Substrates

more

Epoxy Microarray Slides provide a uniform substrate for a variety of DNA/RNA-based diagnostic applications.

APPLICATIONS:

DNA/Oligonucleotide Microarray ;  microRNA Microarray ;  Single Nucleotide Polymorphism (SNP) Analysis ;  Gene Expression Profiling; 

Microarray Reagents

more

Grace Bio-Labs microarray regents have been specifically formulated to achieve the full potential of porous nitrocellulose, accelerating experimental design and…

APPLICATIONS:

Antigen-Capture Assay Antibody Capture Assay RPPA- Reverse Phase Protein Microarray Laser micro-dissection RRPA Epitope-mapping Biomarker Discovery and Validation Immunogen Discovery

NanoParticle Fluorescent Calibration Slide

more

Photostable nanoparticles arrayed on glass slides for calibration of fluorescence imaging systems and quantitative analysis.

APPLICATIONS:

Calibration of Microarray Scanners ;  Quantitative Microarray Analyses Microscope Focal Plane Adjustment;  Microscope Focal Plane Adjustment; 

ProPlates® Multi-Well Chambers

more

ProPlate® re-usable, multi-well chambers are available in a wide variety of formats to fit standard 1 x 25 x 75…

APPLICATIONS:

Microarray ;  Hybridization and Incubation;  ELISA;  PCR and NGS; 

CoverWell™ Incubation Chambers

more

CoverWell™ incubation chambers are reusable, easy to apply chambers that attach without the use of adhesive.  CoverWells™ enclose a large…

APPLICATIONS:

Reverse Transfection Microarray;  DNA Microarray;  In-situ hybridization;  Immunohistochemistry; 

Silicone Isolators

more

Silicone Isolators allow researchers to isolate specimens using removable hydrophobic barriers. They may be used to isolate cells grown in…

SecureSeal™ Hybridization Chambers

more

SecureSeal™ Hybridization Chambers are thin, silicone-gasketed chambers providing optimal surface-to-volume fluid dynamics for hybridization assays on large or multiple specimens…

HybriWell™ Sealing System

more

HybriWell™ Sealing System bonds securely to a microscope slide surface in seconds to confine small reagent volumes with samples and…

Hybridization and Incubation

more

Hybridization and incubation Seals ad Chambers from Grace Bio-Labs are ideally suited for in situ-hybridization assays. The adhesive seal of…

APPLICATIONS:

In-situ hybridization MicroarraysFluorescence In situ Hybridization (FISH)FRET (Fluorescence Resonance Energy Transfer)

FastWells™ Reagent Barriers

more

FastWells™ are sticky, flexible silicone gaskets that form hydrophobic reagent barriers around specimens without messy adhesives or special slides. Gaskets may…

FlexWell™ Incubation Chambers

more

FlexWell™ incubation chamber silicone gaskets form wells on slides using clean release adhesive to isolate up to 16 specimens per…

APPLICATIONS:

Protein MicroarrayHybridizationIncubation

HybriSlip™ Hybridization Covers

more

HybriSlips™ are rigid, light-weight, thin plastic coverslips that minimize friction and facilitate uniform reagent distribution during incubation steps which require…

ProPlates®

more

ProPlates® were specifically designed to enable automated robotic liquid handling. Two main configurations are available: The ProPlate® Microtiter Plate is comprised…

APPLICATIONS:

ProteomicsProtein Microarrays;  Protein expression analysis;  Antibody profiling cDNA and oligonucleotide arrays

Silicone Isolators™ Sheet Material

more

Silicone isolator™ sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. Where additional sealing is…

APPLICATIONS:

Protein and DNA arrays ;  Immunohistochemistry;  Fluorescence In situ Hybridization (FISH) ;  Biopolymers and hydrogel formulation ;  Cryogenic-transmission electron microscopy (Cryo-TEM) ;  Microwave crystallization ;  Ultra-small-angle X-ray scattering (USAXS) ;  Tissue ingeneering;  Live cell lithography” (LCL); 

CultureWell Removable chamber slide 8 well Catalog #: 103542

Microscopy Reagents

more

Grace Bio-Labs microscopy reagents are manufactured in ISO-certified facilities to ensure the highest quality and consistency.

Imaging Spacers

more

Imaging spacers are ultra-thin adhesive spacers which peel-and-stick to coverglass or microscope slides to confine specimens without compression. Layer multiple…

APPLICATIONS:

Imaging;  Microscopy;  High-temperature single-molecule kinetic analysis;  Anti‐Stokes Raman scattering microscopy; 

CoverWell™ Imaging Chambers

more

CoverWell ™ imaging chambers are designed to stabilize and support thick and free-floating specimens for confocal microscopy and imaging applications.…

APPLICATIONS:

Confocal microscopy Imaging Tissue and Cell staining ;  High Resolution Microscopy ;  Live-cell imaging ; 

CoverWell™ Perfusion Chambers

more

CoverWell ™ perfusion press-to-seal covers form water-tight, multiwell cell incubation or cytochemistry chambers when pressed to coverslips or microscope slides.…

APPLICATIONS:

Single molecule spectroscopy Live-cell imaging Microscoscopy

FastWells™ Reagent Barriers

more

FastWells™ are sticky, flexible silicone gaskets that form hydrophobic reagent barriers around specimens without messy adhesives or special slides. Gaskets may…

APPLICATIONS:

Microscopy Fluorescence In situ Hybridization (FISH) Single-molecule fluorescence analysis ;  Immunohistochemistry ; 

MultiSlip™ Coverglass Inserts

more

MutliSlip™ inserts with 8 (18mm x 18mm) or 15 (12mm x 12mm) No. 1.5 German glass coverglass per insert are…

APPLICATIONS:

High resolution microscopy Fluorescent imaging Immunohistochemistry ;  Cell Culture; 

SecureSeal™ Adhesive Sheets

more

These adhesive sheets are made using the same SecureSeal™ adhesive as is used to make HybriWell™ and SecureSeal™ Incubation Chambers.  Thin,…

APPLICATIONS:

Imaging ;  Tissue and Cell staining ;  High Resolution Microscopy; 

SecureSlip™ Silicone Supported Coverglass

more

SecureSlip™ Silicone Supported Coverglass is affixed to a thin microscopically transparent silicone base which secures it to culture vessels by…

Imaging and Microscopy

more

Imaging seals and chambers from Grace Bio-Labs offer a selection of tools for cell/tissue staining for high quality results in…

APPLICATIONS:

Tissue and Cell stainingHigh Resolution MicroscopyLive-cell imaging

CultureWell Removable chamber slide 8 well Catalog #: 103542

Cell Culture Reagents

more

Grace Bio-Labs microscopy reagents are manufactured in ISO-certified facilities to ensure the highest quality and consistency.

CultureWell removable chamber slide

CultureWell™ Removable Chamber Slide

more

CultureWell- removable chamber slide allows the cultivation and analysis of cells directly on a borosilicate microscope slide.

APPLICATIONS:

Fluorescence microscopy ;  Confocal microscopy ;  Cell differentiation and transfection;  Immunohistochemistry ;  Immunofluorescence;  Immunostaining;  Tissue and cell staining ;  Fluorescence Resonance Energy Transfer (FRET) Microscopy; 

CultureWell™ MultiWell Chambered Coverslips

more

CultureWell™ chambered coverglass products consist of removable and reusable, non-cytotoxic silicone gaskets secured to number 1.5 German coverglass. Chambered coverglass…

APPLICATIONS:

Cell Culture Fluorescence applications In-situ hybridization Immunostaining

CS16-CultureWell™ Removable Chambered Coverglass

more

CS16 CultureWell™ removable chambered coverglass is a 16-well chambered coverglass cell culture vessel, with 2 x 8 format with standard…

APPLICATIONS:

Cell CultureFluorescence applicationsIn-situ hybridizationImmunostaining

CultureWell™ Coverglass Inserts

more

Each CultureWell™ coverglass insert is comprised of four chambered coverglass, assembled in a disposable frame placed in a standard 86mm…

APPLICATIONS:

High resolution microscopy Fluorescent imaging Immunohistochemistry

CultureWell™ Reusable Gaskets

more

Gaskets are ideal for forming wells on glass microscope slides or in polystyrene dishes. Gaskets are non-sterile and may be…

APPLICATIONS:

Cell CultureHigh resolution microscopyFluorescent imaging Immunohistochemistry

CultureWell™ Silicone Sheet Material

more

CultureWell™ clear silicone sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. They may be…

APPLICATIONS:

Cell CultureHigh resolution microscopy Fluorescent imagingImmunohistochemistry

MultiSlip™ Coverglass Inserts

more

MutliSlip™ inserts with 8 (18mm x 18mm) or 15 (12mm x 12mm) No. 1.5 German glass coverglass per insert are…

APPLICATIONS:

Cell CultureFluorescent imaging Immunohistochemistry

SecureSlip™ Silicone Supported Coverglass

more

SecureSlip™ Silicone Supported Coverglass is affixed to a thin microscopically transparent silicone base which secures it to culture vessels by…

APPLICATIONS:

Cell CultureImmunofluorescence assayMicroscopy

CultureWell™ ChamberSLIP 16, Non-Removable Chambered Coverglass

more

CultureWell™ NON Removable Chambered Coverglass, 16 Well, No. 1.5 German borosilicate Coverglass. Product consists of cell culture vessels, with a…

APPLICATIONS:

Cell Culture Fluorescence applicationsSmall volume incubation Immunostaining

Silicone Wound Splints

more

Wound splints are constructed of silicone and include suture sites for increased precision in affixing on or within an animal…

Silicone Isolator Sheet Material

more

Silicone isolator™ sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. Where additional sealing is…

APPLICATIONS:

Protein and DNA arrays ;  Immunohistochemistry ;  Fluorescence In-situ Hybridization (FISH) ;  Biopolymers and hydrogel formulation;  Cryogenic-transmission electron microscopy (Cryo-TEM) ;  X-ray scattering ;  Microwave crystallization ;  Ultra-small-angle X-ray scattering (USAXS) ;  Tissue engineering Live cell lithography (LCL); 

CultureWell Silicone Sheet Material

more

CultureWell™ clear silicone sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. They may be…

APPLICATIONS:

Lorem Ipsum ;  Lorem Ipsum;  Lorem Ipsum; 

Novel Microarray Applications For Nitrocellulose Films

IN ONCYTE nitrocellulose film slides, Product Applications, SuperNOVA, Uncategorized

Building on the well-established ability of nitrocellulose to bind macromolecules in gel transfer applications, Grace Bio-Labs invented a method to cast thin porous nitrocellulose films directly onto glass microscope slides.  These “Film-Slides” or “Films” were initially designed for a new platform for immunocytochemistry, called Cytocoherent Transfer (12).  Since that time, Film-Slides have become an established surface for protein microarrays.  Due to the unique physiochemical properties of these Films they are well suited for protein microarrays. Specifically, they bind orders of magnitude more protein than 2D surfaces (functionalized glass or hydrogels), they bind protein by weak intermolecular forces rather than covalent attachment, thereby preserving the authentic structure of bound proteins (3) ; and, the crystalline porous structure of these Films creates a coherent backscatter of light that augments sensitivity for fluorescence detection. (4).

De Facto realization of these unique Film attributes however, requires the use of specialized reagents and procedures that don’t always translate well from 2D surfaces (5). Recent developments in Film-Slide technology enhances their value in antibody capture (ELISA) and antigen capture (RPPA) protein microarrays, and also extends these assays into new applications.  We review here recent methods and new instrumentation to improve fluorescent assay sensitivity on Film-Slides.  Subsequent topics will focus on new spotting and blocking reagents specialized for Film applications, a new reagent for preserving immunogenicity of labile proteins on Films long-term, and new casting methods that allow deposition of nitrocellulose in miniature configurations especially suited for low volume flow-type assays and electrochemical detection.

Improved Fluorescence Detection on Films

Of the various methods that can be used to detect proteins bound to Film, fluorescence is often the method of choice.  Fluorescent assays are faster than other detection methods and multiple fluor colors enable multiplexing, which delivers more data per sample.  A number of fluorescent dyes with blue, yellow, green and red fluorescence emission spectra are commercially available and relatively inexpensive ( 67).  Instruments that are highly tuned to the excitation/emission bands of visible fluorophores are widely used to scan arrays, and accompanying software provides qualitative and quantitative data (8). The cost of these instruments can be a barrier to entry for some researchers interested in casual use of arrays, and so colorimetric assays may be conducted using standard scanners used for print documents.

Nitrocellulose has an inherent (auto) fluorescence, superNOVA_nitrocellulose film slideparticularly at shorter wavelengths in the green/yellow spectra, which to some degree compromises the use of Film Slides in fluorescence applications. To address this issue, Grace has developed SuperNOVA Film with 1/3 the autofluorescence of other Film slides in the visible spectrum. The SuperNOVA formula from Grace provides unsurpassed signal-to-noise ratios  in fluorescence applications when optimized reagents are employed (10).

Two observations promise improved performance of Film for fluorescent applications.  First, inherent autofluorescence is extremely low when using  (NIR) excitation and emission wavelengths in the range of 600nm to 900nm. Second, as mentioned earlier, signal amplification through coherent backscatter leads to highly sensitive detection of labeled protein.  With these observations in mind, Grace Bio-Labs is developing new technology that can significantly improve results with protein microarrays.

Fluors with emission spectra in the NIR range are available as both organic dyes (11) and in the form of nanocrystal technology such as Quantum Dots (1213). These nanocrystals have several advantages over organic dyes:  they are much brighter; they have a relatively broad excitation curve (several hundreds of nanometers) but narrow emission curves, facilitating multiplexed analysis with sensitive detection. In addition, quantum dots are highly stable, so do not saturate or “bleach” with increasing excitation light intensity. The bleaching characteristic (1415) of conventional fluorophore dyes limits the signal amplification effect in porous Film, while quantum dots offer full advantage of this effect.

Most commercially available fluorescent scanners are tuned to fluorescent dyes in the green and red spectra, as these are the most commonly used dyes for microarrays.   Two scanners that are tuned to NIR wavelengths are also available (Innopsys’ Innoscan and LiCor’s Odyssey).  In our experience, the Innopsys scanner has several advantages over the LiCor related to speed and resolution.   Both instruments are relatively expensive with excitation and emission parameters designed for conventional fluorophores.   At present, no scanner for protein arrays is designed to take full advantage of the performance value of quantum dots.

Grace is currently developing an inexpensive, compact fluorescence imager (patent pending) that is specifically tuned for quantum dot nanocrystal excitation.   This instrument provides the advantage of multiplex signal detection using NIR fluorescence on Film-based arrays with a dynamic range and sensitivity comparable and in some cases exceeding that of other scanners.  The combination of a Film platform for high protein binding, optimized reagents and more sensitive detection will push performance of protein arrays to new levels for both the bench scientist and point-of-care diagnostics.