Protein Crystallization

Protein crystallization is a key assay for structural studies of proteins. The protocols for crystallization of protein are challenging due to the stringent requirement for pure samples and control of environmental conditions during the crystallization process. Vapor diffusion using hanging drop is a preferred method for obtaining quality crystals with…

more

Buffers and Reagents

High-quality, ready-to-use buffers and reagents manufactured in ISO- certified facilities.

more
Grace Bio-Labs nitrocellulose microarray substrates
forward phase protein microarray
Reverse phase protein array

Protein Microarray Substrates

more

Grace Bio-Labs microarray surface chemistry is based on the well-known protein-binding properties of nitrocellulose. A range of different formulations have…

APPLICATIONS:

Antigen-Capture AssayAntibody Capture AssayCoronavirus Antigen ArrayEpitope-mappingBiomarker Discovery and ValidationImmunogen Discovery

DNA Microarray Substrates

more

Epoxy Microarray Slides provide a uniform substrate for a variety of DNA/RNA-based diagnostic applications.

APPLICATIONS:

DNA/Oligonucleotide Microarray ;  microRNA Microarray ;  Single Nucleotide Polymorphism (SNP) Analysis ;  Gene Expression Profiling; 

Microarray Reagents

more

Grace Bio-Labs microarray regents have been specifically formulated to achieve the full potential of porous nitrocellulose, accelerating experimental design and…

APPLICATIONS:

Antigen-Capture Assay Antibody Capture Assay RPPA- Reverse Phase Protein Microarray Laser micro-dissection RRPA Epitope-mapping Biomarker Discovery and Validation Immunogen Discovery

NanoParticle Fluorescent Calibration Slide

more

Photostable nanoparticles arrayed on glass slides for calibration of fluorescence imaging systems and quantitative analysis.

APPLICATIONS:

Calibration of Microarray Scanners ;  Quantitative Microarray Analyses Microscope Focal Plane Adjustment;  Microscope Focal Plane Adjustment; 

ProPlates® Multi-Well Chambers

more

ProPlate® re-usable, multi-well chambers are available in a wide variety of formats to fit standard 1 x 25 x 75…

APPLICATIONS:

Microarray ;  Hybridization and Incubation;  ELISA;  PCR and NGS; 

CoverWell™ Incubation Chambers

more

CoverWell™ incubation chambers are reusable, easy to apply chambers that attach without the use of adhesive.  CoverWells™ enclose a large…

APPLICATIONS:

Reverse Transfection Microarray;  DNA Microarray;  In-situ hybridization;  Immunohistochemistry; 

Silicone Isolators

more

Silicone Isolators allow researchers to isolate specimens using removable hydrophobic barriers. They may be used to isolate cells grown in…

SecureSeal™ Hybridization Chambers

more

SecureSeal™ Hybridization Chambers are thin, silicone-gasketed chambers providing optimal surface-to-volume fluid dynamics for hybridization assays on large or multiple specimens…

HybriWell™ Sealing System

more

HybriWell™ Sealing System bonds securely to a microscope slide surface in seconds to confine small reagent volumes with samples and…

Hybridization and Incubation

more

Hybridization and incubation Seals ad Chambers from Grace Bio-Labs are ideally suited for in situ-hybridization assays. The adhesive seal of…

APPLICATIONS:

In-situ hybridization MicroarraysFluorescence In situ Hybridization (FISH)FRET (Fluorescence Resonance Energy Transfer)

FastWells™ Reagent Barriers

more

FastWells™ are sticky, flexible silicone gaskets that form hydrophobic reagent barriers around specimens without messy adhesives or special slides. Gaskets may…

FlexWell™ Incubation Chambers

more

FlexWell™ incubation chamber silicone gaskets form wells on slides using clean release adhesive to isolate up to 16 specimens per…

APPLICATIONS:

Protein MicroarrayHybridizationIncubation

HybriSlip™ Hybridization Covers

more

HybriSlips™ are rigid, light-weight, thin plastic coverslips that minimize friction and facilitate uniform reagent distribution during incubation steps which require…

ProPlates®

more

ProPlates® were specifically designed to enable automated robotic liquid handling. Two main configurations are available: The ProPlate® Microtiter Plate is comprised…

APPLICATIONS:

ProteomicsProtein Microarrays;  Protein expression analysis;  Antibody profiling cDNA and oligonucleotide arrays

Silicone Isolators™ Sheet Material

more

Silicone isolator™ sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. Where additional sealing is…

APPLICATIONS:

Protein and DNA arrays ;  Immunohistochemistry;  Fluorescence In situ Hybridization (FISH) ;  Biopolymers and hydrogel formulation ;  Cryogenic-transmission electron microscopy (Cryo-TEM) ;  Microwave crystallization ;  Ultra-small-angle X-ray scattering (USAXS) ;  Tissue ingeneering;  Live cell lithography” (LCL); 

Imaging Spacers

more

Imaging spacers are ultra-thin adhesive spacers which peel-and-stick to coverglass or microscope slides to confine specimens without compression. Layer multiple…

APPLICATIONS:

Imaging;  Microscopy;  High-temperature single-molecule kinetic analysis;  Anti‐Stokes Raman scattering microscopy; 

CoverWell™ Imaging Chambers

more

CoverWell ™ imaging chambers are designed to stabilize and support thick and free-floating specimens for confocal microscopy and imaging applications.…

APPLICATIONS:

Confocal microscopy Imaging Tissue and Cell staining ;  High Resolution Microscopy ;  Live-cell imaging ; 

CoverWell™ Perfusion Chambers

more

CoverWell ™ perfusion press-to-seal covers form water-tight, multiwell cell incubation or cytochemistry chambers when pressed to coverslips or microscope slides.…

APPLICATIONS:

Single molecule spectroscopy Live-cell imaging Microscoscopy

FastWells™ Reagent Barriers

more

FastWells™ are sticky, flexible silicone gaskets that form hydrophobic reagent barriers around specimens without messy adhesives or special slides. Gaskets may…

APPLICATIONS:

Microscopy Fluorescence In situ Hybridization (FISH) Single-molecule fluorescence analysis ;  Immunohistochemistry ; 

MultiSlip™ Coverglass Inserts

more

MutliSlip™ inserts with 8 (18mm x 18mm) or 15 (12mm x 12mm) No. 1.5 German glass coverglass per insert are…

APPLICATIONS:

High resolution microscopy Fluorescent imaging Immunohistochemistry ;  Cell Culture; 

SecureSeal™ Adhesive Sheets

more

These adhesive sheets are made using the same SecureSeal™ adhesive as is used to make HybriWell™ and SecureSeal™ Incubation Chambers.  Thin,…

APPLICATIONS:

Imaging ;  Tissue and Cell staining ;  High Resolution Microscopy; 

SecureSlip™ Silicone Supported Coverglass

more

SecureSlip™ Silicone Supported Coverglass is affixed to a thin microscopically transparent silicone base which secures it to culture vessels by…

Imaging and Microscopy

more

Imaging seals and chambers from Grace Bio-Labs offer a selection of tools for cell/tissue staining for high quality results in…

APPLICATIONS:

Tissue and Cell stainingHigh Resolution MicroscopyLive-cell imaging

CultureWell removable chamber slide

CultureWell™ Removable Chamber Slide

more

CultureWell- removable chamber slide allows the cultivation and analysis of cells directly on a borosilicate microscope slide.

APPLICATIONS:

Fluorescence microscopy ;  Confocal microscopy ;  Cell differentiation and transfection;  Immunohistochemistry ;  Immunofluorescence;  Immunostaining;  Tissue and cell staining ;  Fluorescence Resonance Energy Transfer (FRET) Microscopy; 

CultureWell™ MultiWell Chambered Coverslips

more

CultureWell™ chambered coverglass products consist of removable and reusable, non-cytotoxic silicone gaskets secured to number 1.5 German coverglass. Chambered coverglass…

APPLICATIONS:

Cell Culture Fluorescence applications In-situ hybridization Immunostaining

CS16-CultureWell™ Removable Chambered Coverglass

more

CS16 CultureWell™ removable chambered coverglass is a 16-well chambered coverglass cell culture vessel, with 2 x 8 format with standard…

APPLICATIONS:

Cell CultureFluorescence applicationsIn-situ hybridizationImmunostaining

CultureWell™ Coverglass Inserts

more

Each CultureWell™ coverglass insert is comprised of four chambered coverglass, assembled in a disposable frame placed in a standard 86mm…

APPLICATIONS:

High resolution microscopy Fluorescent imaging Immunohistochemistry

CultureWell™ Reusable Gaskets

more

Gaskets are ideal for forming wells on glass microscope slides or in polystyrene dishes. Gaskets are non-sterile and may be…

APPLICATIONS:

Cell CultureHigh resolution microscopyFluorescent imaging Immunohistochemistry

CultureWell™ Silicone Sheet Material

more

CultureWell™ clear silicone sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. They may be…

APPLICATIONS:

Cell CultureHigh resolution microscopy Fluorescent imagingImmunohistochemistry

MultiSlip™ Coverglass Inserts

more

MutliSlip™ inserts with 8 (18mm x 18mm) or 15 (12mm x 12mm) No. 1.5 German glass coverglass per insert are…

APPLICATIONS:

Cell CultureFluorescent imaging Immunohistochemistry

SecureSlip™ Silicone Supported Coverglass

more

SecureSlip™ Silicone Supported Coverglass is affixed to a thin microscopically transparent silicone base which secures it to culture vessels by…

APPLICATIONS:

Cell CultureImmunofluorescence assayMicroscopy

CultureWell™ ChamberSLIP 16, Non-Removable Chambered Coverglass

more

CultureWell™ NON Removable Chambered Coverglass, 16 Well, No. 1.5 German borosilicate Coverglass. Product consists of cell culture vessels, with a…

APPLICATIONS:

Cell Culture Fluorescence applicationsSmall volume incubation Immunostaining

Silicone Wound Splints

more

Wound splints are constructed of silicone and include suture sites for increased precision in affixing on or within an animal…

Silicone Isolator Sheet Material

more

Silicone isolator™ sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. Where additional sealing is…

APPLICATIONS:

Protein and DNA arrays ;  Immunohistochemistry ;  Fluorescence In-situ Hybridization (FISH) ;  Biopolymers and hydrogel formulation;  Cryogenic-transmission electron microscopy (Cryo-TEM) ;  X-ray scattering ;  Microwave crystallization ;  Ultra-small-angle X-ray scattering (USAXS) ;  Tissue engineering Live cell lithography (LCL); 

CultureWell Silicone Sheet Material

more

CultureWell™ clear silicone sheet material allows researchers to create their own removable hydrophobic barriers to isolate specimens. They may be…

APPLICATIONS:

Lorem Ipsum ;  Lorem Ipsum;  Lorem Ipsum; 

Design Considerations for Microfluidic Reaction Chambers

IN Product Applications, Seals and chambers, Uncategorized

Microfluidic reaction chambers are often designed for a hybridization or incubation step in molecular analysis to contain molecular interactions in a controlled environment. An example we are very familiar with is in situ hybridization, in which cells or tissue is placed on a slide and a label or antibody is placed in solution on the slide surface to bind to that target.  It is well established that active mixing during hybridization, particularly when one of the targets is immobilized on a 2-dimensional surface, enhances not only the sensitivity of the detection, but also decreases the variability of label over the entire sample (1, 2). As a custom manufacturer of microfluidic devices, one of our primary requests for custom parts is for a microfluidic reaction chamber in which biological targets and labels can be mixed over a period of time.  So what are the considerations for designing microfluidic reaction chambers?

One of the primary objectives of a microfluidic reaction chamber is to prevent evaporation of fluid over longer reaction times. Coverslips have been used for years to slow down evaporation and to hold small fluid volumes in place on a microscope slide. However, coverslips cannot actually eliminate evaporation, and are marginally effective in containing fluids in a confined space.  Thus sealed chambers that allow loading fluids and exchange of fluids are much more effective for longer reactions. In this era of high throughput parallel analysis of macromolecules, microfluidic chambers are used to minimize cost and materials: that is, materials used in manufacturing the device itself and materials that are placed in the device such as valuable reagents. However, conservation of reagent volume must be balanced with the value of overcoming limitations of passive diffusion by active mixing within the chamber.

On the microscopic scale fluid dynamics are greatly influenced by surface tension and capillary forces, which are relatively negligible on a macro scale. Grace Bio-Labs has conducted extensive research into surface-to-volume ratios for optimal performance in hybridization– using antibody-based reactions with microarray and tissue staining. Our findings indicate that chamber height and resulting surface-to-volume ratios for antibody-based interactions is a critical determinant for efficiency and sensitivity of the reaction. A detailed discussion of this analysis is described elsewhere (3), proposing that surface tension and boundary layers in chambers that are too shallow may inhibit diffusion and coupling of reactants.

As previously mentioned, active mixing is a critical factor for effective hybridization, and volumes that allow active mixing, as opposed to simple diffusion of reactants, support efficient and consistent results. The shape and surface properties of the reaction chamber contribute greatly to the effectiveness of mixing. The geometry of a chamber can create ‘dead spots’ in which reactants are trapped in pools that escape active mixing, and all shapes often show edge effects as a result of boundary layers.  Reactants that stick to the surfaces of the chamber may remove their access to targets, and change their properties. While these factors should be considered in design phase, ultimately they need to be established empirically by testing in prototypes. We recommend that prototypes are tested with the actual protocol and reactants used in the application.  Transferring protocols from the macro to micro scale may require some changes in conditions such as concentration of reactants, temperature and times for incubation. Thus the optimization process for using a microfluidic chamber has multiple variables which are best tested in parallel.

What size works for you? Some people ask us why we have so many shapes and sizes for our reaction chambers. The answer is that many of these custom_manufacturing_GBLconfigurations were requested by our customers. We also manufacture many custom chambers for specific applications- companies with instruments that have specific dimensions or tolerances, and researchers with unique sample requirements. Depending on the reaction, we do encourage users to consider the effects of active mixing and the limitations of diffusion in chambers that are too shallow if the chambers are used for hybridization or affinity reactions.

Visit our custom manufacturing page for custom microfluidic solutions, here.

Further reading:

  1. Schaupp, CJ, Jiang, G, Myers, TG, Wilson, MA, 2005. BioTechniques 38(1): 117-119.
  2. Yuen PK, Li G, Baro Y, Muller UR, 2003. Lab Chip 3(1); 46-50. (abstract)
  3. McGrath, CM, Grudzien, JL, Levine, A, 1995. Cell Vision 2(2): 165-169.